Files
ModelTrainingPython/FC_ML_NN/NN_Polynomial_Test.py

58 lines
1.5 KiB
Python
Raw Normal View History

2025-10-17 14:59:16 +08:00
#多项式拟合
import torch
import numpy as np
from FC_ML_Data.FC_ML_Data_Output.Data_Output_File import tensor_to_excel
# 真实多项式系数
true_w = torch.tensor([0.5, 3.0, 2.4]) # 对应x, x², x³项
true_b = 0.9
# 生成训练数据
def make_features(x):
return torch.stack([x**i for i in range(1,4)], dim=1) # 构建x, x², x³特征矩阵
x = torch.linspace(-3, 3, 100)
X = make_features(x)
y = X @ true_w + true_b + torch.randn(x.size()) * 0.5 # 添加噪声
print(x,X,y)
# tensor_to_excel(torch.cat([x, y], dim=-1),"./")
class PolyModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear = torch.nn.Linear(3, 1) # 输入3维(x,x²,x³)输出1维
def forward(self, x):
return self.linear(x)
model = PolyModel()
criterion = torch.nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
for epoch in range(1000):
pred = model(X)
loss = criterion(pred.squeeze(), y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if epoch % 100 == 0:
print(f'Epoch {epoch}, Loss: {loss.item():.4f}')
# 获取训练后的参数
w_pred = model.linear.weight.detach().numpy().flatten()
b_pred = model.linear.bias.detach().numpy()
# print(f"真实参数: w={true_w.numpy()}, b={true_b}")
# print(f"预测参数: w={w_pred}, b={b_pred:.2f}")
# 可视化
import matplotlib.pyplot as plt
plt.scatter(x, y, label='ori')
plt.plot(x, model(X).detach().numpy(), 'r', label='fit')
plt.legend()
plt.show()