修复预测脚本和训练脚本的执行bug
This commit is contained in:
@@ -55,7 +55,7 @@ from FC_ML_Tool.Serialization import parse_json_file
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='导入数据文件参数')
|
||||
parser.add_argument('--param', default='D:\liyong\project\TVS_ML\FC_ML_Baseline\FC_ML_Baseline_Test\param.json',
|
||||
parser.add_argument('--param', default='D:\liyong\project\ModelTrainingPython\FC_ML_Baseline\FC_ML_Baseline_Test\param.json',
|
||||
help='配置参数文件绝对路径')
|
||||
parser.add_argument('--export', default='source.json',
|
||||
help='导出JSON文件名')
|
||||
|
||||
@@ -2,7 +2,6 @@ import argparse
|
||||
import json
|
||||
|
||||
import torch
|
||||
from openpyxl.styles.builtins import output
|
||||
|
||||
from FC_ML_Data.FC_ML_Data_Process.Data_Process_Normalization import Normalizer
|
||||
from FC_ML_NN_Model.Poly_Model import PolyModel
|
||||
@@ -10,18 +9,19 @@ from FC_ML_Tool.Serialization import parse_json_file
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description='代理模型训练参数输入')
|
||||
parser.add_argument('--param', default='D:\liyong\project\TVS_ML\FC_ML_Baseline\FC_ML_Baseline_Test\Train\param.json',
|
||||
parser.add_argument('--param', default='D:\liyong\project\ModelTrainingPython\FC_ML_Baseline\FC_ML_Baseline_Test\pred\param.json',
|
||||
help='配置参数文件绝对路径')
|
||||
args = parser.parse_args()
|
||||
params = parse_json_file(args.param)
|
||||
print(params)
|
||||
source_dir = params["path"] + "/"
|
||||
model_file = source_dir + params["modelFile"]
|
||||
inputs = []
|
||||
names = []
|
||||
names = params["output"]["names"]
|
||||
#获取输入特征
|
||||
for input_value in params["input"]:
|
||||
inputs.append(input_value["value"])
|
||||
names.append(input_value["name"])
|
||||
# names.append(input_value["name"])
|
||||
#记载模型进行预测
|
||||
input_size = params["modelParams"]["inputSize"]
|
||||
output_size = params["modelParams"]["outputSize"]
|
||||
@@ -36,21 +36,23 @@ if __name__ == "__main__":
|
||||
normalization_max = params["modelParams"]["normalizerMax"]
|
||||
normalization_min = params["modelParams"]["normalizerMin"]
|
||||
normalizer = Normalizer(method=normalization_type)
|
||||
normalizer.load_params(normalization_type,normalization_min,normalization_max)
|
||||
normalizer.load_params(normalization_type,normalization_min[0:input_size],normalization_max[0:input_size])
|
||||
input_data = normalizer.transform(torch.tensor(inputs))
|
||||
|
||||
#执行模型预测
|
||||
with torch.no_grad():
|
||||
output_data = model(input_data)
|
||||
print(f"Prediction result: {output_data.item():.4f}")
|
||||
# print(f"Prediction result: {output_data.item().tolist():.4f}")
|
||||
normalizer.load_params(normalization_type, normalization_min[-output_size:], normalization_max[-output_size:])
|
||||
output_data_ori = normalizer.inverse_transform(output_data)
|
||||
print(f"Prediction real result: {output_data_ori.item():.4f}")
|
||||
# print(f"Prediction real result: {output_data_ori.item().tolist():.4f}")
|
||||
#输出预测结果到文件中
|
||||
output_datas = output_data_ori.tolist()
|
||||
json_str = {}
|
||||
|
||||
if len(output_datas) == len(names):
|
||||
for i in range(len(names)):
|
||||
json_str[names[i]] = output_datas[i]
|
||||
|
||||
with open(source_dir + "forecast.json", ) as f:
|
||||
with open(source_dir + "forecast.json","w") as f:
|
||||
f.write(json.dumps(json_str, indent=None, ensure_ascii=False))
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
{
|
||||
"files": ["sample1.CSV"],
|
||||
"path": "D:\\liyong\\project\\TVS_ML\\FC_ML_Baseline\\FC_ML_Baseline_Test\\Data_Handle"
|
||||
"path": "D:\\liyong\\project\\ModelTrainingPython\\FC_ML_Baseline\\FC_ML_Baseline_Test\\Data_Handle"
|
||||
}
|
||||
|
||||
@@ -1,20 +1,23 @@
|
||||
{
|
||||
"path": ["D:\\liyong\\project\\TVS_ML\\FC_ML_Baseline\\FC_ML_Baseline_Test\\Train"],
|
||||
"files": ["sample1.CSV"],
|
||||
"path": "D:\\liyong\\project\\ModelTrainingPython\\FC_ML_Baseline\\FC_ML_Baseline_Test\\Data_Handle",
|
||||
"algorithmParam": {
|
||||
"inputSize": 9,
|
||||
"outputSize": 8,
|
||||
"algorithm": "多项式拟合",
|
||||
"activateFun": "sigmod",
|
||||
"lossFun": "l1",
|
||||
"optimizeFun": "sgd",
|
||||
"exportFormat": ".onnx",
|
||||
"exportFormat": "bin",
|
||||
"trainingRatio": 80,
|
||||
"loadSize": 32,
|
||||
"studyPercent": 0.001,
|
||||
"stepCounts": 3,
|
||||
"roundPrint": 11,
|
||||
"round": 1001,
|
||||
"preDisposeData": false,
|
||||
"roundPrint": 10,
|
||||
"round": 300,
|
||||
"preDisposeData": true,
|
||||
"disposeMethod": "minmax",
|
||||
"dataNoOrder": false
|
||||
"dataNoOrder": true
|
||||
},
|
||||
"algorithm": "基础神经网络NN"
|
||||
}
|
||||
@@ -1,20 +1,51 @@
|
||||
{
|
||||
"modelFile": "model.onnx",
|
||||
"path": "D:\\liyong\\project\\TVS_ML\\FC_ML_Baseline\\FC_ML_Baseline_Test\\pred",
|
||||
"modelFile": "model.bin",
|
||||
"path": "D:\\liyong\\project\\ModelTrainingPython\\FC_ML_Baseline\\FC_ML_Baseline_Test\\Data_Handle",
|
||||
"modelParams": {
|
||||
"inputSize": 3,
|
||||
"outputSize": 3,
|
||||
"inputSize": 9,
|
||||
"outputSize": 8,
|
||||
"normalizerType": "minmax",
|
||||
"normalizerMax": 100,
|
||||
"normalizerMin": 10
|
||||
"normalizerMax": [2000.0,575.9771118164062,5999.64208984375,5806.2333984375,6711.77880859375,99.99962615966797,99.99884796142578,-29.81661605834961,59.998504638671875,27.299999237060547,5.230000019073486,131.0,8.170000076293945,11.899999618530273,-0.8949999809265137,27.100000381469727,17.899999618530273],
|
||||
"normalizerMin": [0.10000000149011612,5.022274971008301,2.0320935249328613,0.21287846565246582,3853.6533203125,0.019815441220998764,0.0033870770130306482,-29.81661605834961,0.0007396229775622487,-37.900001525878906,0.06520000100135803,-9.699999809265137,2.0299999713897705,-32.900001525878906,-32.70000076293945,-29.0,-29.600000381469727]
|
||||
},
|
||||
"input": [
|
||||
{
|
||||
"name": "质量",
|
||||
"value": 1
|
||||
"name": "param1",
|
||||
"value": 0.1
|
||||
}, {
|
||||
"name": "系数",
|
||||
"value": 2
|
||||
"name": "param1",
|
||||
"value": 371.6669936
|
||||
},
|
||||
{
|
||||
"name": "param1",
|
||||
"value": 3483.012088
|
||||
},
|
||||
{
|
||||
"name": "param1",
|
||||
"value": 4333.292092
|
||||
},
|
||||
{
|
||||
"name": "param1",
|
||||
"value": 5582.788747
|
||||
},
|
||||
{
|
||||
"name": "param1",
|
||||
"value": 22.33362393
|
||||
},
|
||||
{
|
||||
"name": "param1",
|
||||
"value": 74.76711286
|
||||
},
|
||||
{
|
||||
"name": "param1",
|
||||
"value": -29.816617
|
||||
},
|
||||
{
|
||||
"name": "param1",
|
||||
"value": 17.14707502
|
||||
}
|
||||
]
|
||||
],
|
||||
"output": {
|
||||
"names": ["label1","label2","label3","label4","label5","label6","label7","label8"]
|
||||
}
|
||||
}
|
||||
@@ -35,26 +35,25 @@
|
||||
*/
|
||||
'''
|
||||
import argparse
|
||||
from locale import normalize
|
||||
from copy import deepcopy
|
||||
|
||||
import torch
|
||||
from torch.utils.data import TensorDataset, DataLoader
|
||||
|
||||
from FC_ML_Data.FC_ML_Data_Load.Data_Load_Excel import get_data_from_csv_feature, get_train_data_from_csv
|
||||
from FC_ML_Data.FC_ML_Data_Load.Data_Load_Excel import get_train_data_from_csv
|
||||
from FC_ML_Data.FC_ML_Data_Output.Data_Output_Pytorch import export_model
|
||||
from FC_ML_Loss_Function.Loss_Function_Selector import LossFunctionSelector
|
||||
from FC_ML_Model.Model_Train_Data import TrainData
|
||||
from FC_ML_NN_Model.Poly_Model import PolyModel
|
||||
from FC_ML_Optim_Function.Optimizer_Selector import OptimizerSelector
|
||||
from FC_ML_Tool.Serialization import parse_json_file
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='代理模型训练参数输入')
|
||||
parser.add_argument('--param', default='D:\liyong\project\TVS_ML\FC_ML_Baseline\FC_ML_Baseline_Test\Train\param.json',
|
||||
parser.add_argument('--param', default='D:\liyong\project\ModelTrainingPython\FC_ML_Baseline\FC_ML_Baseline_Test\Train\param.json',
|
||||
help='配置参数文件绝对路径')
|
||||
args = parser.parse_args()
|
||||
params = parse_json_file(args.param)
|
||||
train_data = torch.tensor()
|
||||
print(params)
|
||||
# print(params)
|
||||
#获取训练参数
|
||||
input_Size = params["algorithmParam"]["inputSize"]#输入特征维度
|
||||
@@ -73,11 +72,15 @@ if __name__ == '__main__':
|
||||
dispose_method = params["algorithmParam"]["disposeMethod"] # 数据预处理方法
|
||||
data_no_order = params["algorithmParam"]["dataNoOrder"] # 训练数据是否乱序处理
|
||||
#加载所有训练数据
|
||||
train_data = []
|
||||
source_dir = params["path"] + "/"
|
||||
for data_file in params["files"]:
|
||||
data_file_path = source_dir + data_file
|
||||
ori_data,normalize = get_train_data_from_csv(data_file_path,pre_dispose_data,dispose_method)
|
||||
torch.cat((train_data,ori_data),dim=0)#按行拼接
|
||||
if len(train_data) == 0:
|
||||
train_data = deepcopy(ori_data)
|
||||
else:
|
||||
train_data = torch.cat((train_data,ori_data),dim=0)#按行拼接
|
||||
#拆分测试集和训练集
|
||||
split = int(training_ratio / 100 * len(train_data))
|
||||
train_dataset = TensorDataset(train_data[:split,0:input_Size], train_data[:split,input_Size:])
|
||||
@@ -140,11 +143,11 @@ if __name__ == '__main__':
|
||||
#每100次迭代输出一次损失数值
|
||||
if epoch % round_print == 0:
|
||||
print(
|
||||
f"Epoch {epoch} | Train Loss: {avg_train_loss:.4f} | Test Loss: {avg_test_loss:.4f} | 损失比: {avg_train_loss / avg_test_loss:.2f}:1")
|
||||
f"Epoch {epoch} | Train Loss: {avg_train_loss:.4f} | Test Loss: {avg_test_loss:.4f} | Loss Factor: {avg_train_loss / avg_test_loss:.2f}:1")
|
||||
with open(source_dir + "training.log", "a") as f:
|
||||
f.write(f"Epoch {epoch} | Train Loss: {avg_train_loss:.4f} | Test Loss: {avg_test_loss:.4f} | 损失比: {avg_train_loss / avg_test_loss:.2f}:1\n") # 自动换行追加
|
||||
f.write(f"Epoch {epoch} | Train Loss: {avg_train_loss:.4f} | Test Loss: {avg_test_loss:.4f} | Loss Factor: {avg_train_loss / avg_test_loss:.2f}:1\n") # 自动换行追加
|
||||
#导出训练后的模型
|
||||
export_model(model,source_dir,"model",export_format)
|
||||
export_model(model,source_dir,"model",export_format,torch.randn(1, input_Size))
|
||||
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user