修复预测脚本和训练脚本的执行bug

This commit is contained in:
2025-10-21 19:49:21 +08:00
parent b9cce1d733
commit 4fb2da1366
10 changed files with 87 additions and 45 deletions

View File

@@ -35,26 +35,25 @@
*/
'''
import argparse
from locale import normalize
from copy import deepcopy
import torch
from torch.utils.data import TensorDataset, DataLoader
from FC_ML_Data.FC_ML_Data_Load.Data_Load_Excel import get_data_from_csv_feature, get_train_data_from_csv
from FC_ML_Data.FC_ML_Data_Load.Data_Load_Excel import get_train_data_from_csv
from FC_ML_Data.FC_ML_Data_Output.Data_Output_Pytorch import export_model
from FC_ML_Loss_Function.Loss_Function_Selector import LossFunctionSelector
from FC_ML_Model.Model_Train_Data import TrainData
from FC_ML_NN_Model.Poly_Model import PolyModel
from FC_ML_Optim_Function.Optimizer_Selector import OptimizerSelector
from FC_ML_Tool.Serialization import parse_json_file
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='代理模型训练参数输入')
parser.add_argument('--param', default='D:\liyong\project\TVS_ML\FC_ML_Baseline\FC_ML_Baseline_Test\Train\param.json',
parser.add_argument('--param', default='D:\liyong\project\ModelTrainingPython\FC_ML_Baseline\FC_ML_Baseline_Test\Train\param.json',
help='配置参数文件绝对路径')
args = parser.parse_args()
params = parse_json_file(args.param)
train_data = torch.tensor()
print(params)
# print(params)
#获取训练参数
input_Size = params["algorithmParam"]["inputSize"]#输入特征维度
@@ -73,11 +72,15 @@ if __name__ == '__main__':
dispose_method = params["algorithmParam"]["disposeMethod"] # 数据预处理方法
data_no_order = params["algorithmParam"]["dataNoOrder"] # 训练数据是否乱序处理
#加载所有训练数据
train_data = []
source_dir = params["path"] + "/"
for data_file in params["files"]:
data_file_path = source_dir + data_file
ori_data,normalize = get_train_data_from_csv(data_file_path,pre_dispose_data,dispose_method)
torch.cat((train_data,ori_data),dim=0)#按行拼接
if len(train_data) == 0:
train_data = deepcopy(ori_data)
else:
train_data = torch.cat((train_data,ori_data),dim=0)#按行拼接
#拆分测试集和训练集
split = int(training_ratio / 100 * len(train_data))
train_dataset = TensorDataset(train_data[:split,0:input_Size], train_data[:split,input_Size:])
@@ -140,11 +143,11 @@ if __name__ == '__main__':
#每100次迭代输出一次损失数值
if epoch % round_print == 0:
print(
f"Epoch {epoch} | Train Loss: {avg_train_loss:.4f} | Test Loss: {avg_test_loss:.4f} | 损失比: {avg_train_loss / avg_test_loss:.2f}:1")
f"Epoch {epoch} | Train Loss: {avg_train_loss:.4f} | Test Loss: {avg_test_loss:.4f} | Loss Factor: {avg_train_loss / avg_test_loss:.2f}:1")
with open(source_dir + "training.log", "a") as f:
f.write(f"Epoch {epoch} | Train Loss: {avg_train_loss:.4f} | Test Loss: {avg_test_loss:.4f} | 损失比: {avg_train_loss / avg_test_loss:.2f}:1\n") # 自动换行追加
f.write(f"Epoch {epoch} | Train Loss: {avg_train_loss:.4f} | Test Loss: {avg_test_loss:.4f} | Loss Factor: {avg_train_loss / avg_test_loss:.2f}:1\n") # 自动换行追加
#导出训练后的模型
export_model(model,source_dir,"model",export_format)
export_model(model,source_dir,"model",export_format,torch.randn(1, input_Size))