切换git用户重新进行项目首次归档

This commit is contained in:
2025-10-17 15:12:38 +08:00
parent c07dbb586d
commit b9cce1d733
71 changed files with 82326 additions and 0 deletions

View File

@@ -0,0 +1,231 @@
import copy
import pandas as pd
import torch
from sympy import false
from FC_ML_Data.FC_ML_Data_Output.Data_Output_File import tensor_to_json
from FC_ML_Data.FC_ML_Data_Process.Data_Process_Normalization import Normalizer
from FC_ML_Tool.Check import is_number
def get_data_from_excel_xy(data_path,sheet_name='Sheet1',normalization = false,normalization_type = 'minmax'):
"""读取Excel文件数据并转换成输入特征和输出特征可以支持多种算子的标准化和正则化操作
Args:
data_path (str): 文件绝对路径
sheet_namestr, optional:表单名
normalization (boolean, optional): 标准化正则化选项
normalization_typestr, optional标准化正则化算子
Returns:
x_data_ori: 输入特征原始tensor
y_data_ori: 输出特征原始tensor
x_data: 输入特征标准化或归一化后tensor
y_data: 输出特征标准化或归一化后tensor
Raises:
data_path: 非法路径
Examples:
get_data_from_excel_xy("D://test.excel")
"""
data = pd.read_excel(data_path, sheet_name=sheet_name,header=None)
x_data_ori = torch.tensor(data.iloc[:, :-1].to_numpy(), dtype=torch.float32) # 除最后一列作为X
y_data_ori = torch.tensor(data.iloc[:, -1].to_numpy(), dtype=torch.float32) # 最后一列作为Y
# print(x_data_ori,y_data_ori)
# x_data_ori = torch.reshape(x_data_ori,(1,-1))
# y_data_ori = torch.reshape(y_data_ori,(1,-1))
x_data = copy.deepcopy(x_data_ori)
y_data = copy.deepcopy(y_data_ori)
normalizer = Normalizer(method=normalization_type)
if normalization:
# 初始化归一化器
normalizer.fit(x_data)
# 归一化转换
x_data = normalizer.transform(x_data)
normalizer.fit(y_data)
y_data = normalizer.transform(y_data)
return x_data_ori,y_data_ori,x_data,y_data,normalizer
def get_data_from_csv(data_path,begin_x,end_x,begin_y,end_y,skip_rows=0, normalization = false,normalization_type = 'minmax'):
"""读取CSV文件数据并转换成输入特征和输出特征可以支持多种算子的标准化和正则化操作
Args:
data_path (str): 文件绝对路径
begin_xint:输入特征起始列
end_xint:输入特征结束列
begin_yint:输出特征起始列
end_yint:输出特征结束列
skip_rowsint, optional:跳过读取行数
normalization (boolean, optional): 标准化正则化选项
normalization_typestr, optional标准化正则化算子
Returns:
x_data_ori: 输入特征原始tensor
y_data_ori: 输出特征原始tensor
x_data: 输入特征标准化或归一化后tensor
y_data: 输出特征标准化或归一化后tensor
Raises:
data_path: 非法路径
Examples:
get_data_from_csv("D://test.excel",0,8,10,18)
"""
data = pd.read_csv(data_path, encoding='gbk', skiprows=skip_rows) # 跳过首行
# data = pd.read_excel(data_path, sheet_name=sheet_name,header=None)
x_data_ori = torch.tensor(data.iloc[:, begin_x:end_x].to_numpy(), dtype=torch.float32) # 除最后一列作为X
y_data_ori = torch.tensor(data.iloc[:, begin_y,end_y].to_numpy(), dtype=torch.float32) # 最后一列作为Y
# print(x_data_ori,y_data_ori)
# x_data_ori = torch.reshape(x_data_ori,(1,-1))
# y_data_ori = torch.reshape(y_data_ori,(1,-1))
x_data = copy.deepcopy(x_data_ori)
y_data = copy.deepcopy(y_data_ori)
normalizer = Normalizer(method=normalization_type)
if normalization:
# 初始化归一化器
normalizer.fit(x_data)
# 归一化转换
x_data = normalizer.transform(x_data)
normalizer.fit(y_data)
y_data = normalizer.transform(y_data)
return x_data_ori,y_data_ori,x_data,y_data,normalizer
def get_data_from_csv_filter(data_path,filter_rows,filter_file_path,filter_file_name,skip_rows,skip_file_path,skip_file_name):
"""读取csv数据文件并生成一个前xx行数据过滤文件一个抽样行数据文件
Args:
data_path (str): 文件绝对路径
filter_rowsint:过滤不读取的行数
filter_file_pathstr:输出过滤文件路径
filter_file_namestr:输出过滤文件名
skip_rowsint:抽样读取行数
skip_file_path (str):输出抽样文件路径
skip_file_namestr输出抽样文件名
Returns:
x_data_ori: 输入特征原始tensor
y_data_ori: 输出特征原始tensor
x_data: 输入特征标准化或归一化后tensor
y_data: 输出特征标准化或归一化后tensor
Raises:
data_path: 非法路径
Examples:
get_data_from_csv_filter("D://test.excel",0,“D://filter//”,“filter.csv”,10,“D://skip//”,“skip.csv”)
"""
# 读取前xx行数据
df = pd.read_csv(data_path,encoding='gbk',nrows=filter_rows)
# 转换为PyTorch Tensor
df_data = torch.tensor(df.values)
tensor_to_json(df_data,filter_file_path,filter_file_name)
data = pd.read_csv(data_path, encoding='gbk', skiprows=lambda x: x % skip_rows != 0)
data_ori = torch.tensor(data.values)
tensor_to_json(data_ori, skip_file_path, skip_file_name)
return df_data,data_ori
def get_data_from_csv_feature(data_path,skip_rows = 100,sample_rows = 100,normalization_type = 'minmax'):
"""读取csv数据文件并生成一个前xx行数据过滤文件一个抽样行数据文件
Args:
data_path (str): 文件绝对路径
sample_rows(int): 连续抽样总行数
skip_rowsint:抽样行数量
normalization_typestr, optional标准化正则化算子
Returns:
label_name: 标签矩阵
source_data: 原始数据
max: 每一列的最大值
min: 每一列的最小值
average: 每一列的平均值
sample_x: 抽样的横坐标
sample_y: 抽样的纵坐标
Raises:
data_path: 非法路径
Examples:
get_data_from_csv_feature("D://test.excel",0,8,10,18)
"""
# 读取前xx行数据
df = pd.read_csv(data_path,encoding='gbk')
df = df.dropna(axis=1,how='all') # 删除包含任何空值的列
df = df.dropna(axis=0,how='all') # 删除包含任何空值的行
print(df.iloc[0,0])
# 尝试将值转换为数字
if is_number(df.iloc[0,0]):#首行为非标签行
#获取列数
label_name = []
cols = df.columns.size
for i in range(cols):
label_name.append("param"+ str(i+1))
# 读取全量数据
source_data = torch.tensor(df.iloc[0:sample_rows, ].to_numpy(), dtype=torch.float32)
data_ori = torch.tensor(df.iloc[:, ].to_numpy(), dtype=torch.float32)
normalizer = Normalizer(method=normalization_type)
# 初始化归一化器
normalizer.fit(data_ori)
data_sample = data_ori[::skip_rows]
sampled_indices = torch.arange(0, len(data_ori), skip_rows) # 记录行号
return label_name,source_data,normalizer.params["min"],normalizer.params["max"],normalizer.params["mean"],sampled_indices,data_sample
else:
#获取列数
label_name = df.iloc[0]
# 读取全量数据
source_data = torch.tensor(df.iloc[1:sample_rows, ].to_numpy(), dtype=torch.float32)
data_ori = torch.tensor(df.iloc[1:, ].to_numpy(), dtype=torch.float32)
normalizer = Normalizer(method=normalization_type)
# 初始化归一化器
normalizer.fit(data_ori)
data_sample = data_ori[::skip_rows]
sampled_indices = torch.arange(0, len(data_ori), skip_rows) # 记录行号
return label_name,source_data,normalizer.params["min"],normalizer.params["max"],normalizer.params["mean"],sampled_indices,data_sample
def get_train_data_from_csv(data_path,normalization = false,normalization_type = 'minmax'):
"""读取csv数据文件并生成标准化训练数据
Args:
data_path (str): 文件绝对路径
normalizationboolean, optional标准化正则化是否启用
normalization_typestr, optional标准化正则化算子
Returns:
train_data: 训练特征输入
normalizer: 标准正则化器
Raises:
data_path: 非法路径
Examples:
get_data_from_csv_feature("D://test.excel")
"""
# 读取前xx行数据
df = pd.read_csv(data_path,encoding='gbk')
df = df.dropna(axis=1,how='all') # 删除包含任何空值的列
df = df.dropna(axis=0,how='all') # 删除包含任何空值的行
# 尝试将值转换为数字
if is_number(df.iloc[0,0]):#首行为非标签行
#获取列数
label_name = []
cols = df.columns.size
for i in range(cols):
label_name.append("param"+ str(i+1))
# 读取全量数据
data_ori = torch.tensor(df.iloc[:, ].to_numpy(), dtype=torch.float32)
if not normalization:
return data_ori
normalizer = Normalizer(method=normalization_type)
# 初始化归一化器
normalizer.fit(data_ori)
data_normal = normalizer.transform(data_ori)
return data_normal,normalizer
else:
# 读取全量数据
data_ori = torch.tensor(df.iloc[1:, ].to_numpy(), dtype=torch.float32)
if not normalization:
return data_ori
normalizer = Normalizer(method=normalization_type)
# 初始化归一化器
normalizer.fit(data_ori)
data_normal = normalizer.transform(data_ori)
return data_normal,normalizer

View File

@@ -0,0 +1,25 @@
import torch
from torchvision import transforms
from PIL import Image
# 数据预处理
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# 预测函数
def predict(model_path,data_path,result_path,image_path):
# 加载模型
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = torch.load('model.pth', map_location=device)
model.eval()
img = Image.open(image_path).convert('RGB')
input_tensor = transform(img).unsqueeze(0).to(device)
with torch.no_grad():
output = model(input_tensor)
return output.argmax().item()
print(f"Predicted class: {predict('test.jpg')}")

View File