import torch import torch.nn as nn import torch.optim as optim import numpy as np import matplotlib.pyplot as plt # 生成数据 np.random.seed(0) x = np.random.rand(100, 1) * 10 # 生成100个在0到10之间的随机数 y = 3.5 * x + 2 + np.random.randn(100, 1) * 2 # 真实的线性关系加上一些噪声 # 将numpy数组转换为torch张量 x_tensor = torch.from_numpy(x).float() y_tensor = torch.from_numpy(y).float() model = nn.Linear(in_features=1, out_features=1, bias=True) criterion = nn.MSELoss() optimizer = optim.SGD(model.parameters(), lr=0.01) epochs = 100 for epoch in range(epochs): # 前向传播 outputs = model(x_tensor) loss = criterion(outputs, y_tensor) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() if (epoch + 1) % 10 == 0: print(f'Epoch [{epoch + 1}/{epochs}], Loss: {loss.item():.4f}') # 可视化原始数据和拟合结果 predicted = model(x_tensor).detach().numpy() # detach()用于从计算图中移除张量,避免未来的梯度计算干扰。 plt.scatter(x, y, label='Original data') plt.plot(x, predicted, color='red', label='Fitted line') plt.legend() plt.show()