Files
ModelTrainingPython/FC_ML_NN/NN_Polynomial_Test.py

58 lines
1.5 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#多项式拟合
import torch
import numpy as np
from FC_ML_Data.FC_ML_Data_Output.Data_Output_File import tensor_to_excel
# 真实多项式系数
true_w = torch.tensor([0.5, 3.0, 2.4]) # 对应x, x², x³项
true_b = 0.9
# 生成训练数据
def make_features(x):
return torch.stack([x**i for i in range(1,4)], dim=1) # 构建x, x², x³特征矩阵
x = torch.linspace(-3, 3, 100)
X = make_features(x)
y = X @ true_w + true_b + torch.randn(x.size()) * 0.5 # 添加噪声
print(x,X,y)
# tensor_to_excel(torch.cat([x, y], dim=-1),"./")
class PolyModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear = torch.nn.Linear(3, 1) # 输入3维(x,x²,x³)输出1维
def forward(self, x):
return self.linear(x)
model = PolyModel()
criterion = torch.nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
for epoch in range(1000):
pred = model(X)
loss = criterion(pred.squeeze(), y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if epoch % 100 == 0:
print(f'Epoch {epoch}, Loss: {loss.item():.4f}')
# 获取训练后的参数
w_pred = model.linear.weight.detach().numpy().flatten()
b_pred = model.linear.bias.detach().numpy()
# print(f"真实参数: w={true_w.numpy()}, b={true_b}")
# print(f"预测参数: w={w_pred}, b={b_pred:.2f}")
# 可视化
import matplotlib.pyplot as plt
plt.scatter(x, y, label='ori')
plt.plot(x, model(X).detach().numpy(), 'r', label='fit')
plt.legend()
plt.show()